rcpViewer

Run Control Parameters (RCPs)
Ayooluwa Akinyele
Bowie State University

Bowie, MD 20715
Summer 2004

Fermi National Accelerator Laboratory

Summer Internships in Science and Technology

P.O Box 500, Batavia, IL 60510

1.
Abstract

The objective of this paper is to describe my project, which was to create a graphic tool that enables physicists at DØ to view RCP (Run Control Parameters) files in a tree structure format.

2.
Background Information

[image: image2.png]The DØ experiment was proposed for the Fermilab antiproton-proton Tevatron Collider in 1983 and approved in 1984. After 8 years of design, testing, and construction of its hardware and software components, the experiment recorded its first antiproton-proton interaction on May 12, 1992. The data-taking period referred to as "Run I" lasted through the beginning of 1996. Collisions were studied mainly at an energy of 1800 GeV (Gigaelectron Volts) in the center of mass (the world's highest center of mass energy), with a brief run taken at 630 GeV. Run I consists of the years between 1992 and 1999. The data-taking period since then is now referred to as Run II.

[image: image3.jpg]For several years, the understanding of nature has revolved around four separate forces – gravity, the electromagnetic force, the weak force, and the strong force. Over the past three decades, many experimental and theoretical advances have led to a coherent and predictive picture of the strong, electromagnetic and weak forces called the Standard Model (SM). In the Standard Model, the elementary constituents of matter, quarks and leptons, interact through forces, which are transmitted through the exchange of particles called gauge bosons.

Between the 1960s and the 70s, it was known that the electromagnetic and weak forces could be described through a unified picture, and the theory of electroweak interactions was created. In the Standard Model, the strong and electroweak interactions are specified separately, but are not unified. There are compelling reasons to believe that the SM, though remarkably predictive and extremely well tested, is only an approximate theory to nature. Theories have been postulated that extend the SM, provide unification of the forces, and give deeper understanding of the Higgs particles. Seeking evidence for the path beyond the SM is the major theme of current experimentation.

According to the Standard Model, the particles created at the Tevatron fall into two broad classes: leptons (electron, muon, tau, and neutrinos associated with each) and hadrons (protons, pions, kaons, etc.), the latter being composed of combinations of the six quarks. The quarks and leptons are mirrored by their respective antiparticles. In addition, the gauge bosons transmit the fundamental forces; these include the photon (electromagnetic force), the gluons (strong force), and the W and Z bosons (weak force).

The physics results from DØ rest on the technical achievements of many scientists and engineers. The Fermilab accelerator complex, with its eight distinct major components, provides high intensity proton and antiproton beams at the world's highest energy. These beams collide at two locations in the Tevatron ring, where experiments are performed by the CDF and DØ collaborations. The DØ experiment contains many sophisticated components, which include not only the particle detectors, but also the electronics needed to select and digitize events, and the software necessary to monitor the experiment and reconstruct events written to magnetic tape.

Currently, the DØ Collaboration consists of more than 500 scientists and engineers from 60 institutions in 15 countries. Over 110 Ph.D. dissertations have been written so far on various aspects of DØ, and more are anticipated over the next two years, as the analyses of data from Run 1 wind down, and those of the next run, with both an upgraded detector and improved accelerator commence.

(www-d0.fnal.gov)

3.
Introduction

The DØ Experiment consists of a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the world's premier high-energy accelerator, the Tevatron Collider, at Fermilab in Batavia, Illinois, USA. The research is focused on precise studies of interactions of protons and antiprotons at the highest available energies. It involves an intense search for subatomic clues that reveal the character of the building blocks of the universe.

[image: image4.jpg][image: image5.png]
Physicists at DØ deal with the reconstruction of proton-antiproton interactions seen by the DØ detector, look for new particles and trying to understand how the particles behave. In order to reconstruct these interactions, the Physicists use parameter sets known as RCPs. RCP stands for “Run Control Parameters”, and are text files where parameters are stored. Most run control parameter sets (RCPs) are associated with a specific DØ developed software package. Parameter sets that are to be used for official reconstruction must be associated with a package. The release managers use the association with a particular software package as the method for controlling what gets into the official RCP database.

In order to allow two packages to have parameter sets with the same name without conflict, parameter sets are named by both the name of their owning package and their own name. Such flexibility is useful for software development and data analysis tasks.

For example: <package> <rcp>

 d0reco reco_init.rcp

In addition to package rcps, there are also framework RCP files, which specify how the pieces of the program go together.

4.
Tools learned/used

I learned to use a number of tools as part of this project.

4.1 Python

Guido van Russom, in the early 1990s created the Python language. Now the Python Software Foundation (PSF), where Guido van Russom is president, is a non-profit membership organization devoted to advancing open source technology related to the Python programming language.

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a simple but effective approach to object-oriented programming. Python's elegant syntax and dynamic typing, together with its interpreted nature, makes it an ideal language for scripting and rapid application development in many areas on most hardware/software platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for all major platforms from the Python Web site, http://www.python.org/, and can be freely distributed. The Python interpreter is easily extended with new functions and data types implemented in C or C++ (or other languages callable from C). Python is also suitable as an extension language for customizable applications.

4.1.1 Tkinter

The Tkinter module ("Tk interface") is the standard Python graphical interface for the Tk GUI toolkit from Scriptics (formerly developed by Sun Labs).

Both Tk and Tkinter are available on most Unix platforms, as well as on Windows and Macintosh systems. Starting with the 8.0 release, Tk offers native look and feel on all platforms.

Tkinter consists of a number of modules. The Tk interface is located in a binary module named _tkinter (this was tkinter in earlier versions). This module contains the low-level interface to Tk. It is usually located in a shared library (or DLL), but might in some cases be statically linked with the Python interpreter.
4.1.2 Pmw (Python Mega Widgets)

Pmw is a toolkit for building high-level compound widgets in Python using the Tkinter module. It consists of a set of base classes and a library of flexible and extensible megawidgets built on this foundation. These megawidgets include notebooks, combo-boxes, selection widgets, pane widgets, scrolled widgets and dialog windows.

4.1.3 Tree.py
This is an efficient optimized tree control widget written in Python, and only needs Python and Tkinter installed. No other toolkits, widgets or libraries are needed.

Tree.py was written by Charles E. “Gene” Cash (email: gcash@cfl.rr.com)

Copyright ©1998 Gene Cash.

This module was a major element needed to complete my project successfully and efficiently.

4.2 Unix

The UNIX operating system was pioneered by Ken Thompson and Dennis Ritchie at Bell laboratories (now AT&T Bell Laboratories) in the late 1960s. One of the primary goals in the design of this operating system was to create an environment that promoted efficient program development. Also important was that the operating system be small and memory efficient, and that it be easy to maintain.

Since physicists at DØ were using the UNIX system, it was imperative for me to learn UNIX to be able to implement my project effectively and successfully.
4.3 Linux

Linux is a version of UNIX that has gained popularity because of its stability as an operating system for hosting web servers. Linux is open source software and is freely available over the Internet.

4.4 CVS (Code Versioning System)

CVS started out as a set of shell scripts written by Dick Grune in December, 1986. In April, 1989, Brian Berliner designed and coded CVS. Jeff Polk later helped Brian with the design of the cvs module and vendor branch support.

CVS is a version control system, used for recording the history of source files. CVS helps a group of people working on a project keep track of source code changed. It allows several people to make changes to the software files for the project in their own directories, and then merge these changes when each developer is done.

I used CVS to check in new versions of the source code of the rcpViewer. Over the course of the project I created four versions of the rcpViewer and made them available to the physicists at DØ.

4.5 The Shell – Unix System Command interpreter

It is a program that reads the lines you type at a terminal and performs various operations depending on what the commands you enter. The shell is the part of the UNIX system that sits between you and the computer, forming a shell around the computer that is consistent in its outward appearance. It attempts to convert your commands into instructions that the computer can understand and act on.

To do my project, I had to learn the commands. This took a while because of the large number of commands the Shell understands. It was a little complex at first, but the more I used it the more accustomed I became to it. Soon, I was able to move around easily and run the programs including the rcpViewer program.

4.6 X-windows

X Windows is a public domain windowing system that is mainly used on UNIX systems. The system includes a standard library of routines that can be used to develop Graphical User Interface (GUI) applications. The system also includes standard utilities like xclock, xcalc, xeyes, etc.

Since the rcpViewer is a GUI application, it was imperative to use X-windows to execute it.

4.7 UPS

UPS (UNIX Product Support) is a software support toolkit developed at Fermilab for the management of software products on local systems by the system administrators and users. It was also designed to facilitate the product distribution and configuration management tasks of the product providers.

UPS provides an organizational framework for the rcpViewer files. This allows the python script, which is the rcpViewer to work with the other files, such as the input rcp files as requested by the user.

4.8 Kerberos

Kerberos is a network authentication protocol. It is designed to provide strong authentication for client/server applications by using secret-key cryptography.

Kerberos was created at MIT as a solution to network security problems. The Kerberos protocol uses strong cryptography so that a client can prove its identity to a server (and vice versa) across an insecure network connection. After a client and server has used Kerberos to prove their identity, they can also encrypt all of their communications to assure privacy and data integrity as they go about their business.

To get access to the Unix/Linux System at DØ (e.g., d0mino), it was required to get a Kerberos ticket. Once received, I had access to the DØ systems, and I could work on my project from almost any computer at Fermilab.

5.
Discussion of Project

My project deals with displaying over three thousand RCP files, creating a tree structure to view the RCP files in an organized manner, and being able to view the RCP files through a text component.

Before I wrote the script of the rcpViewer, I developed a plan of what I wanted to do. Figure 3, shows what my customer at DØ wanted the software to display:

To understand how I was going to create this program, which would be given one rcp package and filename and then asked to create the tree, various test scripts were created to do the smaller pieces of the project. As input to this, I needed to know more about the contents of RCP files:

//

// Comments are usually here.

//

string ...

string ...

RCP init = <d0reco reco_init>

RCP read = <d0reco D0recoReadEvent>

RCP unpack = <d0reco reco_unpack_raw>

RCP skim = <d0reco skim_rawdata>

RCP detRDC = <d0reco reco_det_RDC>

RCP detDST = <d0reco reco_det_DST>

RCP trk = <d0reco reco_gtr>

RCP vtx = <d0reco reco_vtx_data>

RCP pid = <d0reco reco_pid>

RCP SKIM = <np_tmb_stream tags_stream>

RCP write = <d0reco reco_write_data>

RCP fini = <d0reco reco_fini>
For example, RCP init = <d0reco reco_init>, tells the framework program to get the rcp file reco_init from the d0reco package. It is normally in the sub-directory d0reco/rcp.
In order to create the tree display, I had to understand file system commands in python. I also had to learn how to use Regular expressions to search, and understand how to use the Tree module.

Regular expressions (or REs) are essentially a tiny, highly specialized programming language embedded inside python and made available through the re module. Using it, one specifies the rules for the set of possible strings that are to be matched. With REs you can ask questions such as “Does this string match the pattern?”. REs can also do various things with strings.

I used the Regular expressions to search the RCP files for the match:

RCP <name> = < package rcpname >

I would then turn this match if located in a file into a data structure, which was taken as input, to a similar search (package, rcpname) (package/rcp/rcpname.rcp. This process was done numerous times to create all the branches and leaves of the tree.

My first objective was to write a program to read an RCP file and extract the information using the above process. My second objective was to use the result of the first objective to create a command line version of the tree structure of RCP files, but with tabs instead of the plus and minuses of the GUI file explorers.

For the project, I had four classes/functions that I created:

Menubar – this creates the toolbar

getrcp – this gets the rcps for each node

Node – this does the node callback and handles the functionality of each individual node.

(i.e. if node clicked the text in the file is loaded onto the text widget).
Main – this puts the program together.

By breaking up the tasks and responsibilities into classes, the coding of the rcpViewer was practical and straightforward. When I finished writing the script and had debugged the program, I released the first version.

How is rcpViewer executed on the Unix/Linux System?

Getting ready to run the rcpViewer on a public release

To run rcpViewer, cd (change directory) to the top level of a release. For example, cd /D0/dist/releases/. There will be entries for all the releases that have been released. Select one of them and cd into it. Now run the rcpViewer.

Running the rcpViewer

There are three ways to run the rcpViewer:

1.
setup rcpViewer

2.
Then type:

· rcpViewer <package>/rcp/<rcpfile>

· rcpViewer <package> <rcpfile>

· rcpViewer (note: This is the best option if you are a first time user, because help is available)

If the information is correct, and all the environmental variables are setup then the rcpViewer should execute. You will need to setup D0RunII, and pmw in order for it to work. Python is already installed on the systems so it does not need to be setup.

Running rcpViewer on a private release

The first thing to do is to setup a release in your home directory. You then should cd to the top level of your private release and run the rcpViewer.

For example:

setup D0RunII <version>

cd myrelease

setup rcpViewer

rcpViewer <package> <rcpfile>
6.
Results/Feedback

I presented the software to my customers. Figure 4 shows a picture of what it looked like.

The following bugs were found in version 1.0:

· The highlighting of selected rcp files didn’t work.

· rcpViewer couldn’t search the public release if the package doesn’t exist in the private release.

In addition, some more functionality was needed. A search section was needed in the rcpViewer. Also, a representation of the public release when running the software in a private release was needed. From private release, white was used to represent files in the private release, green to represent the public release, and red to represent rcp files that do not exist anywhere.

By Version 4, the rcpViewer had a search section and the desired color representation for private releases. Figure 5 shows the final product:

[image: image1.png]
7.
Conclusion

Currently, the rcpViewer is located on the Unix/Linux systems at DØ. The product was made to be accessible to every physicist with an account at DØ. The physicists that have tried it say that it is useful and that it helps make finding RCP files a lot easier. The rcpViewer was made so that one could execute the program anywhere there were RCP packages.
8.
Acknowledgments

I would like to thank God first for providing me a wonderful opportunity to learn. I would also like to thank David Ritchie, my supervisor, for his guidance and assistance throughout the whole summer; Paul Russo for suggesting the project; Alan Jonckheere for assistance on the project; Elliot McCrory, my mentor, for his assistance with talk preparations; Dr. Davenport, Dianne Engram and the SIST committee for giving me an opportunity to be at Fermilab.

9.
References

DØ Experiment. Physics Highlights from the DØ Experiment (1992--1999).

6 Aug, 2001. 27 July 2004. <http://www-d0.fnal.gov/public/highlights/index.html>

Paterno Marc. Run Control Parameters. 9 Oct, 2002. 25 July, 2004.

<http://cdspecialproj.fnal.gov/d0/rcp/D0LocalGuide.htm>

SourceForge. Python Mega Widgets. 5 Aug, 2003. 28, Jul 2004.

<http://www.dscpl.com.au/pmw/>

Lundh, Fredrik. Python Standard Library. O’Reilly & Associates, Inc. California,

1999

Grubbs, David G. Version Management with CVS. 2 Nov, 1993.

<pesch@cygnus.com>. Signum Support AB.

Kochan, Stephen G. and Patrick H. Wood. Exploring the UNIX system.

Hayden Book Company. New Jersey, 1984.
Figure 2: represents the proton-antiproton collisions

Toolbar

RCP Text contents

- A (will be given)

 - B

 - C

 - D

- E

 - F

- G

RCP

Tree

Links to other rcp files.

Note: not all RCP files contain these rcp links.

Figure 2: A 3D view of proton-antiproton collision as they happen

Figure 3

� EMBED PBrush ���

Figure 4 shows a picture of what it looked like:

Figure 5, Final product of the rcpViewer, which is currently available on the DØ System

Figure 1: Standard Model

-1-

_1153118672

_1152967122

