
[image: image4.png]

CONVERSION OF PORTIONS OF MCFAST

 A COMPLEX FAST MONTE CARLO PROGRAM
FROM FORTRAN TO C AND C++
Moussa Souaré

August 10, 2004

Fermi National Particle Accelerator

The University of Akron, EE department

Abstract

MCFast is a fast Monte Carlo program built by the simulation group at Fermilab.
MCFast was written with Fortran structures that are non standard extension. On Linux, g77 does not support Fortran structures. Therefore, there is a need to purchase an Absoft compiler. To avoid this need, MCFast has to be rewritten in C or C++.

Introduction

MCFast is a Monte Carlo simulation program which simulates the response of a detector to an event at a collider or fixed target. As its name says, MCFast stands for a fast Monte Carlo program. It is ten times faster than Geant. Geant is a simulator program that simulates particles through a detector. It is very good in what it does, but very slow in what it does. Because of millions of events that need to be simulated, a simulator program which is fast is sometimes necessary, then the creation of MCFast. More interesting, MCFast has been used in designing BTev detector.

For this work, focus will be on rewriting some part of the utilities of MCFast which must be callable from Fortran, C, and C++.
Procedure

· Add counters to determine how many times the subroutine has been called.

· Learn to read Fortran code

· Rewrite Fortran code to C

· Create C and C++ headers for use in calling functions
· Test the different codes made
Example of Fortran Code

[image: image2.png]integer function move_ctk_point_cov(cl, covl, x, ¢2, cov2, s3d)

e
Move a helix and its covariance matrix from one reference point to
another in a solencidal B field. Return value is always 0.

cl c track structure (read)
Input track parameters

covl DFLOAT array (read)
5x5 covariance matrix for cl

x(3) DFLOAT array (read)
New reference point

*c2 c track structure (rwrite)
output track parameters

*cov2 DFLOAT array (write)
5x5 covariance matrix for c2

*s3d DFLOAT variable (write)
3-D arc length the track moved between points
>3SEIEISSIIEESSIIFSSS>FSSSSSSSSSSE>ISSS>>S>>>55555>>>>>555>>>>5>>>>>>>

fo00000000QOOOONOORQQQQ

implicit none

#include "ctrack_struct.inc"
#include "const.inc"

c Externals
integer move_ctk_point, deriv_ctk_point
external move_ctk_point, deriv_ctk_point

c calling arguments
record /ctrack_struct/ cl, c2
DFLOAT x(3), covl(5,5), cov2(5,5)
DFLOAT s3d

c local variables
record /ctrack_struct/ c
integer status
DFLOAT R(5,5), cov(5,5)

c Save initial track and move track to new reference point
c Track must be saved in case output track is same as input track.
call ucopy(cl, ¢, CTRACK_WORD)

L e e

status = move_ctk_point (cl, x, c2, s3d)
status = deriv_ctk_point (c, c¢2, R)
if (status .ne. 0) goto 9999

call vzero(cov, 5*5*FLOAT_WORD)
call MxABAtr (5, 5, R, covl, cov)
call ucopy(cov, cov2, 5*5*FLOAT_WORD)

move_ctk_point_cov = 0
return

c Error return

9999 move_ctk_point_cov = status
call ucopy(cl, c2, CTRACK_WORD)
return

end

Example of C Code
[image: image3.png]#include "ctrack_struct.h"
#include "const.h"
#include "move_ctk_point_cov.h"

#define covl(ii, jj) *(covl_p+5*jj+ii)
#define cov2(ii,3J) *(cov2_ p+5*jj+ii)

int move_ctk_point_cov_(ctrack_s *cl, double *covl_p, double x[3],
ctrack_s *c2, double *cov2_p, double *s3d){

double R[5][5], cov[5]([5];
ctrack_s c;

int status;

int i, 3;

c.cu = (*cl).cu;
c.phi0 = (*cl).phi0;
c.da (*cl).da;
c.ct (*cl) .ct;
c.z0 (*cl).20;
c.uo0 (*cl1) .u0;
c.vo (*cl) .v0;
c.pt (*cl) .pt;
c.p (*cl) .p;
c.q (GE TG
c.xref = (*cl).xref;
c.yref = (*cl).yref;
c.zref = (*cl).zref;

status = move_ctk_point_(cl, x, c2, s3d);
status deriv_ctk_point_(&c, <2, R);
if (status != 0)
{

(*c2) .cu = (*cl).cu;

(*c2) .phi0 = (*cl).phiO;

(*c2) .da = (*cl).da;

(*c2) .ct = (*cl).et;

(*c2) .20 = (*cl).z0;

(*c2) .u0 = (*cl).u0;

(*c2) .v0 = (*cl).v0;

(*c2) .pt = (*cl).pt;

*ec2)p) (*cl) .p;

(*c2) .q = (*cl).q;

(*c2) .xref = (*cl).xref;

(*c2) .yref (*cl) .yref;

(*c2) .zref (*cl) .zref;

return status;
}

for (i=0; i<5; ++i) for(j=0; 3j<5; ++3) cov([jl[i] = 0;
i=5;
mxabatr_(&i, &i, *R, covl_p, *cov);
for (i=0; i<5; ++i) for(3=0; 3<5; ++3j){
cov2 (i,) = cov[3llil;

i

return 0;

Discussion

In Fortran variables are passed by address, Routine names are case insensitive, Arrays are column-major, and Strings contain length; whereas in C, variables are passed by value, Names are case sensitive, Arrays are row-major and Strings are null terminated. Fortran character strings are converted to C char pointers.

In addition, since Fortran is case insensitive, all variable names are translated to lower case by the compiler and an underscore is appended to function’s names. The table below best describes some relations between Fortran and C.
	Fortran
	C
	size(bits)

	INTEGER*1
	signed char
	8

	INTEGER*2
	short
	16

	INTEGER
	int
	32

	REAL
	float
	32

	DOUBLE PRECISION
	double
	64

	COMPLEX
	2 float struct
	64

	DOUBLE COMPLEX
	2 double struct
	128

	SUBROUTINE SUBR()
	void subr_()
	

	FUNCTION FN()
	void fn_()
	

	COMMON /CB/data(10)
	structs
	

Relational and Logical Operators
	
	Fortran
	Example
	C/C++
	Example

	Equal to
	.EQ.
	IF (A.EQ.B)...
	==
	if(a==b)...

	Not Equal to
	.NE.
	IF (A.NE.B)...
	!=
	if(a!=b)...

	Less Than
	.LT.
	IF (A.LT.B)...
	<
	if(a<b)...

	Greater Than
	.GT.
	IF (A.GT.B)...
	>
	if(a>b)...

	Less Than or Equal to
	.LE.
	IF (A.LE.B)...
	<=
	if (a<=b)...

	Greater Than or Equal to
	.GE.
	IF(A.GE.B)...
	>=
	if(a>=b)...

	Logical Not
	.NOT.
	IF(.NOT.A)...
	!
	if(!a)...

	Logical AND
	.AND.
	IF(A.AND.B)...
	&&
	if (a&&b)...

	Logical OR
	.OR.
	IF(A.OR.B)...
	||
	if(a||b)...

C and Fortran store arrays differently. If an array has more than one index, then the order of indices must be switched. For instance, a simple array a(1) = 3.14 can be written in C as:
*a = 3.14;
*(a+1) = 3.14; or

a [1] = 3.14;
But for the double arrays, four steps are recommended:

1. variable dim are possible only if one knows the dim,

2. one needs to set up indexing explicitly,

3. one has to pick a way to access,

4. if one pick x [] [], then don’t forget to reverse the order.
For example in,

Fortran an array M (i, j) will be written in

C or C++ as M[j][i];

However, if an array
cov1 (5, 5) is a calling argument in Fortran,
cov1 (5, 5) will be rewritten in C as:

#define cov1 (ii, jj) *(cov1_p+5*jj+ii), where i and j are integers. Also, the calling argument will be changed to cov1_p.

Furthermore, indices start at 1 in Fortran but at 0 in C, so all indices must be lower by 1 in C.
Conclusion

Rewriting Fortran code to C and C++ will certainly be economically beneficial, because there is no need to purchase a new compiler. In addition, this change makes some part of the utilities of MCFast callable from Fortran, C and C++. During the rewriting process, care should be observed when dealing with double arrays.
 Acknowledgments:

I would like to acknowledge the permanent assistance and daily guidance of my supervisor Lynn Garren. I wish to give a special acknowledgement to the committee of this program, the US department of Energy and Dr. Davenport. I am very thankful to Dr Paul Lam for encouraging me to this program.
References:
· DEC Fortran,

 User Manual for Open VMS VAX Systems
· DEC Fortran

 Language Reference Manual

· The C standard, Incorporating Technical

 Corrigendum 1.

· http://cepa.fnal.gov
· http://owen.sj.ca.us/rkowen/howto/FandC/FandC.call.html
[image: image1]