Jorge L. Suarez Jr.

Supervisor: Philippe Canal

Fermi National Accelerator Laboratory

University of Miami

M.S. Computer and Electrical Engineering

Table of Contents

Abstract

 3

Introduction

 4

Testing ROOT

 4

ROOT Trees and Database Access

 8

Future Developments

10

References

11

Abstract:

This report focuses on the development of an efficient test framework and database functionality for the ROOT data analysis application. Numerous improvements on the existing test framework were made as well as a few third party test suites added to provide more detailed testing information. The improvements made reduced the amount of time it takes to create and add a new test and helps developers focus more on development rather than testing.

The database functionality allows ROOT to load a tree structure from an existing database to analyze and display the data. Database writing functionality allows users to write an existing tree structure to a database for use in other applications. This greatly enhances the versatility of the ROOT framework and gives users a greater flexibility of data storage formats.

Introduction:

The ROOT analysis framework is designed for use in High Energy Physics (HEP) experiments. It provides the necessary framework for which to handle tens of terabytes of data generated during experiment runs. ROOT provides many facilities for analyzing and displaying data, from 2-D histograms to 3-D graphics showing the interaction among particles in a collision.

ROOT design and implementation began in the early 1990’s for use with the NA49 experiment at CERN and since has expanded to run on many different platforms including UNIX, LINUX, Windows, and Mac OS X. It is written in C++ and uses an object-oriented programming style that supports easily adding and customizing components. It features its own C++ interpreter on the command line so that users can write scripts and programs for use in ROOT as if they were writing regular C++ programs. C++ style scripts can be loaded at runtime through a single command which makes functions written in the script available as if they were linked at compile time.

Testing Root:

Development of the ROOT framework is managed using Concurrent Versioning System (CVS) software so that changes can be tracked and undone if necessary. Testing of the ROOT framework consists of a separate project which contains over 75 tests cases and matching expected output. Each time a test is run the expected output is compared with the actual output and, depending on their equality, determine if a test has failed or not.

The test framework is written in C++ and depends mainly on the use of makefiles. Makefiles simplify running tests because they allow entire subsets of tests to be run with a single command. The gmake utility is used to interpret the makefiles and run the tests. Other utilities, such as the diff and sed, make comparing test output and determining the results of a run simple.

The main issues with the test framework were the time needed to add tests and the resulting quality of tests for time sensitive output. In order to address the time it takes to add tests four existing test frameworks were considered: CPPUNIT, Oval, QMTest, and NiCOS. Of these CPPUNIT and QMTest have the best available documentation and were easiest to integrate with the current framework in the 4 weeks allotted to the project.

CPPUNIT is a port of the JUNIT framework for unit testing in C++. It was considered a useful addition to the ROOT test framework, because it allows easily adding tests and gives detailed output on which test failed and what file and line it failed. This was a major plus since all tests written for root thus far had only a pass/fail status when the tests were run. Detailed information allows the person running the tests to easily locate what went wrong and fix the problem relatively quickly.

QMTest provided as a web-based interface from which to run tests and essentially provides the same features as using makefiles, but without having to edit them directly. It provides support for CPPUNIT tests and contains a web reporting and email feature which makes information on test runs readily available from the internet or your personal inbox.

NiCOS (Nightly COntrol System) provided features such as the ability to run tests daily after the latest version of ROOT was compiled but proved unnecessary since running all tests on a distributed system did not take much time. It also featured the ability to send out emails on failed tests so that the results would be available immediately in the morning, but since QMTest already provided this feature this product was deemed useless and therefore was not added.

In order to keep the existing framework up to date with the addition of CPPUNIT and QMTest a few changes had to be made to the existing makefile structure and scripts were created to facilitate adding new tests. The majority of the work involved editing makefiles to automatically find a needed include file. Previously, the file was referenced in a makefile via its relative path, which required that added tests would contain a different string for the path. This made a template makefile less than ideal because it would take time to find and retype the relative path for each file. The problem was solved by moving the include file to a known directory within the “roottest” folder and generating its path from a makefile’s ability to execute shell commands. Since all tests are located under the “roottest” folder, generating the path to the include file required extracting the first part of the working directory up to “roottest/” and then tagging the rest of the path to the include file. A variable in the makefile was set to this path and exported so that recursive calls of makefiles would not require a lookup of the path again.

Another problem with adding tests was that tests created in new subdirectories required that the directory name be added to the makefile in the parent directory so that its makefile could be executed. This issue was addressed similarly to finding the path to an include file. A shell command would locate a helper script which would take the path of the currently executing directory as an argument and would return a list of subdirectories which contain makefiles. In such a way, tests in subdirectories could be run without explicit gmake invocations.

There were a total of ninety-four makefiles which had to be updated to use the new file location system. The files were edited using a script which used the find command to locate every file named “Makefile” and looped through the entire list of files passing them as arguments to the stream editor (sed) so that the lines dealing with the include files and the subdirectories could be edited. Once the script was written it took only a few seconds to update all files and the time spent writing the script was much less than it would have taken to locate, open, edit, and save each of the files individually.

A script was also written to help add tests. It took as arguments the test name and the directory in which to add the test. The script creates the appropriate directories, copies the needed files, and modifies the template file to prepare for the test. The only thing needed to do is write the actual test, which usually involves creating a function and having it called from the root script file.

After adding CPPUNIT, QMTest, and modifying all the makefiles the ROOT test framework was more complete. CPPUNIT provided the facilities to add unit tests and solves the problems associated with finding which tests failed and where. QMTest’s web based interface allows test results to be viewed remotely and integrated well with CPPUNIT tests as well as the existing tests. The updated makefiles and helper scripts reduce the amount of time required to create tests. Tests were also modified to remove time dependent information via the stream editor (sed).

ROOT Trees and Database Access:

An important part of the ROOT framework is the ability to use tree structures to hold and analyze data. Trees are designed to store large quantities of same-class objects which are optimized to reduce disk space and improve access speed. Trees make use of other objects, namely branches, leafs, buffers, and baskets, to achieve their functionality. Currently, trees can only be saved to and retrieved from proprietary ROOT files which can be as large as 2GB in size. It would be useful if tree structures could interact with SQL databases.

The first phase of the second project involves adding the ability to load a tree from an SQL database. The approach taken to implement this functionality takes advantage of polymorphism and inheritance in C++. Since most of the functionality for handling tree loading and maintenance is contained in the “TTree” and “TBuffer” classes, two derived classes that add database communication functionality would make completing the project a much simpler task than rewriting a SQL specific implementation.

[image: image1.wmf]
Figure 1 Tree Structure Design Interaction

The TSQLTree class was derived from the TTree class, the TSQLBasket class was derived from the TBasket class, and the TSQLBuffer class was derived from the TBuffer class. A few modifications were made to the TBranch class so that it can create data baskets of the appropriate type by calling a virtual function in TTree which would return either a regular TBasket object or a TSQLBasket object. The work was placed mainly in the TSQLTree class and the TBuffer class in order to avoid making major design changes to existing code, which would have been necessary if the database functionality was placed in TBranch or any of its would be derived classes.

Database connections and access were made through a separate ROOT addition called RDBC, which has a JDBC like interface. This package has all the necessary interfaces for reading and writing to databases. After taking into consideration all that RDBC and the existing tree classes had to offer, the project consisted mainly of plugging components together to get the desired functionality. Getting a tree loaded from existing database tables proved to be a simple task, requiring that a connection be established and that the TBuffer redirection operators be aware of the database and make the appropriate calls when necessary to load the data to the internal buffers.

Testing was done with four separate tables and each loaded and displayed the information correctly using the Treeviewer and histogram drawing features. There were different data types tested, including chars, strings, floats, integers, and doubles.

Writing to the database was a bit more complicated than reading because tables had to be created from existing trees. If a branch has more than one leaf on it then the columns in the database would be named by a combination of the branch and leaf name separated by a double underscore (“__”). In such a way, the reading mechanism could be modified to reconstruct the same tree structure.

Future Development:

At the time of this writing basic database updates could be performed but has not been extensively tested. Future developments should include modifying the database reading mechanism to mimic the behavior of the writing mechanism so that trees written by TSQLTree can be recreated in the same manner. Also, database reading and writing should be recoded using ROOT’s built in database classes and a benchmark taken using both the existing classes and RDBC. From the results of such a test, the one which provides the best performance with the desired functionality should be used.

References:

1. ROOT User’s Guide Version 4.08:

http://root.cern.ch/root/doc/RootDoc.html
2. GNU make Manual:

http://www.gnu.org/software/make/manual/make.html
PAGE
11

