McPerM

The McFarm Performance Monitor

Richard Thomas

Benedict College

Columbia, SC 29204

Supervisor

Dr. Hyunwoo Kim

University of Texas at Arlington

Fermi National Accelerator Laboratory

Summer Internships in Science and Technology

Batavia IL, 60510

Summer 2004

1.
Abstract

This paper will describe a summer project relating to the D0 Southern Analysis Region (D0SAR) collaboration. The purpose of the project was to implement McPerM, the performance-monitoring tool used in the Monte-Carlo simulation. It will also elucidate the interrelations of my project with that of the overall goal of Fermi National Accelerator Laboratory. 

2.
Introduction

Nature is comprised of four forces: strong, electromagnetic, weak, and gravity. Further understanding of these forces and nature in general is of quintessence to the goals and aims of Fermi National Accelerator Laboratory (Fermilab). For many years, our understanding of nature has revolved around four separate, unrelated forces -- gravity, the electromagnetic force, the weak force, and the strong force. Over the past three decades, many experimental and theoretical advances have led to a coherent and predictive picture of the strong, electromagnetic and weak forces called the Standard Model (SM). 

According to the Standard Model, the particles created at the Tevatron fall into two broad classes: leptons (electron, muon, tau, and the neutrinos associated with each) and hadrons (protons, pions, kaons, etc.)— The latter being composed of combinations of the six quarks. The quarks and leptons are mirrored by their respective antiparticles. In addition, there are gauge bosons that transmit the fundamental forces. These include the photon (electromagnetic force), the gluons (QCD strong force), and the W and Z bosons (weak force).

The Standard Model however is only an approximate theory and current research is being done to improve on this theory and validate its claims. To validate the Standard Model, Fermi National Accelerator Laboratory (Fermilab), perform high energy particle experiments colliding particles to yield new particles with varying characteristics to help prove the theory. The Fermilab accelerator complex, with its eight distinct major components, provides high intensity proton and antiproton beams at the world's highest energy (900 GeV for each beam). These beams collide at two locations in the Tevatron ring, where experiments are performed by the CDF and DZero collaborations. The DZero experiment contains many sophisticated components, which include not only the particle detectors, but also the electronics needed to select and digitize events, and the software necessary to monitor the experiment and reconstruct events written to magnetic tape.

[image: image1.wmf]
Fig.1.
This is a schematic view of the DZero detector. The tracking chambers near the beam are shown in purple, gray and pink. The calorimeters are shown in yellow, blue, and green. The muon chambers are shown in orange, and surround the iron magnets (in red).

A schematic diagram of the DZero detector is shown in Fig. 1. The above description is drawn from the state of the detector in Run I. There are three major subsystems: a collection of tracking detectors extending from the beam axis to a radius of 30 inches; energy-measuring calorimeters surrounding the tracking region; and, on the outside, a muon detector that detects deflected muons using solid iron magnets.


There is a very large amount of collision that take place at the detectors and they yield a large amount of data to be analyzed. The collision events that occur at D-Zero need to be compared to some simulated data to see the variance between the collisions and help in the discovery of new sub-atomic particles. This simulated data that is being compared to the actual events is call Monte Carlo (MC) data.
Monte-Carlo Simulations are mathematical re-creations of the collisions that occur on the Tevatron ring. Through a series of equations, specific parts of the collision process are modeled and re-created. They are then randomized to ensure the accuracy of the data, which helps to make them a more appropriate source of analysis for actual collisions. The diagram below is a representation of an event, which took place at the D-Zero detector. This is what the Monte Carlo simulation is re-creating and enabling us to compare and analyze these results with some absolute or simulated collisions. 


[image: image2.png]
Fig.2.
This is a depiction of an event taken from the D-Zero detector.
Due to the massive amount of MC data that is needed, it would be impossible to create all of it at Fermilab. D-Zero relies on remote institutions to supplement MC creation. One of those institutions is University of Texas at Arlington (UTA) which is a part of the D0 Southern Analysis Region (D0SAR). McFarm is a software environment in Linux developed at UTA to facilitate D0 Monte Carlo (MC) sample production in a medium to large sized Linux-farm. Its implementation is based on NFS, Python scripts and mc_runjob package. In McFarm, one big computer Task can be segmented into multiple Jobs and distributed to multiple nodes of a big computer farm. Each node produces MC sample according to the instruction, and the outputs are gathered and sent back to the requestor, mostly D0. 

A farm is a system of computers, which link their processing power to form a grid. A grid is a type of parallel and distributed system that enables the sharing, selection, and aggregation of geographically distributed "autonomous" resources dynamically at runtime. This depends on their availability, capability, performance, cost, and users' quality-of-service requirements. 

3.
Tools Used

3.1
Python

Python is an interpreted, interactive, object-oriented programming language. It is often compared to Tcl, Perl, Scheme or Java. It was created in the early 1990s by Guido van Russom at Stitchting Mathematisch Centrum (CWI) in the Netherlands as a successor to the language known as ABC. It is a simple but extremely powerful programming language: It supports modules, classes, exceptions, very high-level dynamic data types, and dynamic typing. There are interfaces to many system calls and libraries, as well as to various windowing systems (X11, Motif, Tk, Mac, and MFC). The Python implementation is portable: it runs on many brands of UNIX, on Windows, DOS, OS/2, Mac, Amiga... Because of these characteristics and because Python was selected as the DZero scripting language, Python was used to implement all major scripts related to the different projects.

3.2
XML

XML is the Extensible Markup Language. It is designed to improve the functionality of the Web by providing more flexible and adaptable information identification. It is called extensible because it is not a fixed format like HTML (a single, predefined markup language). Instead, XML is actually a ‘meta-language’ – a language for describing other languages-which allows one to design their own customized markup languages for limitless different types of documents.

3.3
Ploticus

Ploticus is a non-interactive software package for producing plots, charts, and graphics from data. It was developed in a Unix/C environment and runs on various UNIX, Linux and win 32 systems. Ploticus is good for automated or just-in-time graph generation, handles date and time nicely, and has basic statistical capabilities. It allows significant user control over colors, styles, options and details.

4.
McPerM: The Performance Monitor

McPerM is a performance-monitoring tool based on McFarm. Its main purpose is to display overall performance statistics of a farm with respect to the number of events processed, the size of the files generated and the relative transfer times. McPerM uses XML as the data transport medium and Ploticus as the interface to display the requested statistics.

4.1 
Goals

The main goal was to re-implement McPerM, because it was crashing and having internal server errors. After that phase of the project was completed, some aesthetic work was to be done to the web front-end and make the page seem more appealing to the eye.

4.2
Structure of McPerM

McPerM performs four main tasks, those are:

1. It converts archived information on a remote farm into XML files on a per-job basis.

2. The XML files are collected by the main-server displaying the information using Globus toolkit.

3. This information is then converted into a McPerM readable database that is again in XML but follows a different structure.

4. This McPerM database is parsed every time there is a request to read information and displays the gathered statistics using Ploticus. A graphical representation of these tasks is shown below.
[image: image3.png]
Fig.3.
This is a graphical representation of the tasks performed by McPerM.
There are two components to McPerM

1. McP_remote

2. McP_server

McP_remote: This unit resides on the remote farm. A remote farm is a farm which is different from the farm where the main server resides. The main server is the server which hosts the web server and the main McPerM database. The McP_remote performs the function of looking at the archives and extracting information from the ‘gather.log’ files of the archived jobs. These jobs are then stored in a pre-defined location waiting to be picked up by the main server farm.

McP_server: This unit resides on the main farm which hosts the main server (including the web server) that displays the information. Currently this farm is the UTA-SWIFT farm. It determines which files are to be fetched from the remote farms, looks in the predefined database location above and fetches those files which are new and which have not yet been fetched from that farm.
4.3
Implementation

The McPerM web front-end uses Python as the CGI scripting tool. It searches for the requested information from the McPerM database based on the farm name and the phase of the process desired to be viewed. The user connects with McPerM through this web front-end, which in turns display the statistics requested through Ploticus.  
4.3
Results

There are two main options for graph types for the user and those are either get the speed statistics for a farm over a desired period or get the data statistics for that period. The latter gives the user further options of what he or she wants to view and some of those are whether the users desires a cumulative or daily plot type or whether he or she would require the size of the data transferred or the total of events generated. Some of the resulting plots are shown below; they depict different options for graphs that McPerM allows a user to request.

[image: image4.png]
Table1. 
This is an example of the Speed Link Statistic option that is available to the user for a specific farm over a period of time.

[image: image5.png]
Table2. 
This is an example of the daily plot of the total events generated in a specific farm over a desired period of time.

[image: image6.png]
Table3.
This is a cumulative plot for the total events generated for a farm over a specified period of time.

[image: image7.png]
Table4.
This is a daily plot of the size of data transferred for a farm over time.

[image: image8.png]
Table5. This is a cumulative plot of the size of data transferred for a farm over a period of time.
5.
Conclusion

The program is now up and running; the project for the summer was a success and will be in use in the near future for further study of the statistics of the respective farms that are monitored by McPerM.

6.
Acknowledgements

I would like to thank Hyunwoo Kim, Jae Yu, and the team from University of Texas at Arlington for taking the time out to mentor me and making sure that my experience here was the best possible. I would also like to give a special thank you to the SIST Committee with special thanks to Dianne Engram, Elliot McCrory and Dr. Davenport for giving me the opportunity to conduct this research and ensuring that I make good use of it.

7.
References

[1]
Lutz, Mark and Ascher, David. Learning Python. O’Reilly & Associates, Inc. California, 1999.

[2]
“Physics Highlights from the D0 Experiment 1992-1999.”

[3]
http://doserver1.fnal.gov/projects/results/runi/highlights/runi_summery.html
[4]
Lundh, Fredrik. Python Standard Library. O’Reilly & Associates, Inc. California, 1999

